Adaptive Consensus ADMM for Distributed Optimization

نویسندگان

  • Zheng Xu
  • Gavin Taylor
  • Hao Li
  • Mário A. T. Figueiredo
  • Xiaoming Yuan
  • Tom Goldstein
چکیده

The alternating direction method of multipliers (ADMM) is commonly used for distributed model fitting problems, but its performance and reliability depend strongly on userdefined penalty parameters. We study distributed ADMM methods that boost performance by using different fine-tuned algorithm parameters on each worker node. We present a O(1/k) convergence rate for adaptive ADMM methods with node-specific parameters, and propose adaptive consensus ADMM (ACADMM), which automatically tunes parameters without user oversight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty

We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the met...

متن کامل

A Block-wise, Asynchronous and Distributed ADMM Algorithm for General Form Consensus Optimization

Many machine learning models, including those with non-smooth regularizers, can be formulated as consensus optimization problems, which can be solved by the alternating direction method of multipliers (ADMM). Many recent efforts have been made to develop asynchronous distributed ADMM to handle large amounts of training data. However, all existing asynchronous distributed ADMM methods are based ...

متن کامل

Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis

Aiming at solving large-scale learning problems, this paper studies distributed optimization methods based on the alternating direction method of multipliers (ADMM). By formulating the learning problem as a consensus problem, the ADMM can be used to solve the consensus problem in a fully parallel fashion over a computer network with a star topology. However, traditional synchronized computation...

متن کامل

Asynchronous Distributed ADMM for Consensus Optimization

Distributed optimization algorithms are highly attractive for solving big data problems. In particular, many machine learning problems can be formulated as the global consensus optimization problem, which can then be solved in a distributed manner by the alternating direction method of multipliers (ADMM) algorithm. However, this suffers from the straggler problem as its updates have to be synch...

متن کامل

Generalized Distributed Learning Under Uncertainty for Camera Networks

Consensus-based distributed learning is a machine learning problem used to find the general consensus of local learning models to achieve a global objective. It is an important problem with increasing level of interest due to its applications in sensor networks. There are many benefits of distributed learning over traditional centralized learning, such as faster computation and reduced communic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017